The topology of a semisimple Lie group is essentially unique
نویسندگان
چکیده
We study locally compact group topologies on simple and semisimple Lie groups. We show that the Lie group topology on such a group S is very rigid: every “abstract” isomorphism between S and a locally compact and σ -compact group Γ is automatically a homeomorphism, provided that S is absolutely simple. If S is complex, then noncontinuous field automorphisms of the complex numbers have to be considered, but that is all. We obtain similar results for semisimple groups. © 2011 Elsevier Inc. All rights reserved.
منابع مشابه
ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملSemisimple Algebraic Groups in Characteristic Zero
It is shown that the classification theorems for semisimple algebraic groups in characteristic zero can be derived quite simply and naturally from the corresponding theorems for Lie algebras by using a little of the theory of tensor categories. This article is extracted from Milne 2007. Introduction The classical approach to classifying the semisimple algebraic groups over C (see Borel 1975, §1...
متن کاملGradient Flows, Convexity, and Adjoint Orbits
This dissertation studies some matrix results and gives their generalizations in the context of semisimple Lie groups. The adjoint orbit is the primary object in our study. The dissertation consists of four chapters. Chapter 1 is a brief introduction about the interplay between matrix theory and Lie theory. In Chapter 2 we introduce some structure theory of semisimple Lie groups and Lie algebra...
متن کاملLie Groups and Lie Algebras
A Lie group is, roughly speaking, an analytic manifold with a group structure such that the group operations are analytic. Lie groups arise in a natural way as transformation groups of geometric objects. For example, the group of all affine transformations of a connected manifold with an affine connection and the group of all isometries of a pseudo-Riemannian manifold are known to be Lie groups...
متن کاملA Note on the Closed Ideals of Prosemisimple Lie Algebras
We extend the basic fact that every ideal of a finite dimensional semisimple Lie algebra has a unique complement to the case of closed ideals of prosemisimple Lie algebras. We prove that if A is a closed ideal of a prosemisimple Lie algebra L = lim ←−−Ln (n ∈ N), where the Ln are finite dimensional semisimple Lie algebras, then there exists a unique ideal B of L such that L = A ⊕ B. Mathematics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011